The search functionality is under construction.

Author Search Result

[Author] Michitaka KAMEYAMA(65hit)

61-65hit(65hit)

  • Field-Programmable VLSI Based on a Bit-Serial Fine-Grain Architecture

    Masanori HARIYAMA  Weisheng CHONG  Michitaka KAMEYAMA  

     
    PAPER

      Vol:
    E87-C No:11
      Page(s):
    1897-1902

    This paper presents a novel architecture to solve two problems of existing FPGAs : the large delay and area due to complex programmable switch blocks, and the large area due to coarse-grain logic blocks that are underutilized to a great degree. A mesh-connected cellular array based on a bit-serial pipeline architecture is introduced to minimize complexity of switch blocks. A fine-grain logic block architecture with a functionality of a bit-serial adder is presented to minimize the number of inputs and outputs of the logic block since increase in the number of inputs and outputs directly increases the complexity of a switch block. For an area-efficient design, the logic block is implemented based on a hybrid of a programmable logic gate and a dedicated carry logic. The hybrid architecture allows us to use a small lookup table to implement the logic gate. Moreover, the carry logic uses a functional pass-gate that merges both logic and storage functions compactly. The performance of the fine-grain field-programmable VLSI (FPVLSI) is evaluated to be more than 2 times higher than that of a coarse-grain FPVLSI.

  • FOREWORD Open Access

    Michitaka KAMEYAMA  

     
    FOREWORD

      Vol:
    E93-D No:8
      Page(s):
    2025-2025
  • An Asynchronous FPGA Based on LEDR/4-Phase-Dual-Rail Hybrid Architecture

    Shota ISHIHARA  Yoshiya KOMATSU  Masanori HARIYAMA  Michitaka KAMEYAMA  

     
    PAPER-Electronic Circuits

      Vol:
    E93-C No:8
      Page(s):
    1338-1348

    This paper presents an asynchronous FPGA that combines 4-phase dual-rail encoding and LEDR (Level-Encoded Dual-Rail) encoding. 4-phase dual-rail encoding is employed to achieve small area and low power for function units, while LEDR encoding is employed to achieve high throughput and low power for the data transfer using programmable interconnection resources. Area-efficient protocol converters and their control circuits are also proposed in transistor-level implementation. The proposed FPGA is designed using the e-Shuttle 65nm CMOS process. Compared to the 4-phase-dual-rail-based FPGA, the throughput is increased by 69% with almost the same transistor count. Compared to the LEDR-based FPGA, the transistor count is reduced by 47% with almost the same throughput. In terms of power consumption, the proposed FPGA achieves the lowest power compared to the 4-phase-dual-rail-based and the LEDR-based FPGAs. Compared to the synchronous FPGA, the proposed FPGA has lower power consumption when the workload is below 35%.

  • A VLSI-Oriented Model-Based Robot Vision Processor for 3-D Instrumentation and Object Recognition

    Yoshifumi SASAKI  Michitaka KAMEYAMA  

     
    PAPER

      Vol:
    E77-C No:7
      Page(s):
    1116-1122

    In robot vision system, enormously large computation power is required to perform three-dimensional (3-D) instrumentation and object recognition. However, many kinds of complex and irregular operations are required to make accurate 3-D instrumentation and object recognition in the conventional method for software implementation. In this paper, a VLSI-oriented Model-Based Robot Vision (MBRV) processor is proposed for high-speed and accurate 3-D instrumentation and object recognition. An input image is compared with two-dimensional (2-D) silhouette images which are generated from the 3-D object models by means of perspective projection. Because the MBRV algorithm always gives the candidates for the accurate 3-D instrumentation and object recognition result with simple and regular procedures, it is suitable for the implementation of the VLSI processor. Highly parallel architecture is employed in the VLSI processor to reduce the latency between the image acquisition and the output generation of the 3-D instrumentation and object recognition results. As a result, 3-D instrumentation and object recognition can be performed 10000 times faster than a 28.5 MIPS workstation.

  • Unified Scheduling of High Performance Parallel VLSI Processors for Robotics

    Bumchul KIM  Michitaka KAMEYAMA  Tatsuo HIGUCHI  

     
    PAPER-Parallel Processor Scheduling

      Vol:
    E76-A No:6
      Page(s):
    904-910

    The performance of processing elements can be improved by the progress of VLSI circuit technology, while the communication overhead can not be negligible in parallel processing system. This paper presents a unified scheduling that allocates tasks having different task processing times in multiple processing elements. The objective function is formulated to measure communication time between processing elements. By employing constraint conditions, the scheduling efficiently generates an optimal solution using an integer programming so that minimum communication time can be achieved. We also propose a VLSI processor for robotics whose latency is very small. In the VLSI processor, the data transfer between two processing elements can be done very quickly, so that the communication cycle time is greatly reduced.

61-65hit(65hit)